Triangulating Smooth Submanifolds with Light Scaffolding

نویسندگان

  • Jean-Daniel Boissonnat
  • Arijit Ghosh
چکیده

We propose an algorithm to sample and mesh a k-submanifold M of positive reach embedded in R. The algorithm first constructs a crude sample of M. It then refines the sample according to a prescribed parameter ε, and builds a mesh that approximates M. Differently from most algorithms that have been developped for meshing surfaces of R, the refinement phase does not rely on a subdivision of R (such as a grid or a triangulation of the sample points) since the size of such scaffoldings depends exponentially on the ambient dimension d. Instead, we only compute local stars consisting of k-dimensional simplices around each sample point. By refining the sample, we can ensure that all stars become coherent leading to a k-dimensional triangulated manifold M̂. The algorithm uses only simple numerical operations. We show that the size of the sample is O(ε−k) and that M̂ is a good triangulation of M. More specifically, we show that M and M̂ are isotopic, that their Hausdorff distance is O(ε) and that the maximum angle between their tangent bundles is O(ε). The asymptotic complexity of the algorithm is T (ε) = O(ε−k 2−k) (for fixed M, d and k). Key-words: Manifold triangulation, meshing, manifold learning, manifold sampling, computational geometry, computational topology This research has been partially supported by the Agence Nationale de la Recherche (project GAIA 07-BLAN-0328-04). in ria -0 06 04 00 4, v er si on 1 27 J un 2 01 1 Triangulation efficace de variétés lisses Résumé : On propose un algorithme pour échantillonner et mailler une sousvariété M de dimension k plongée dans R. Après avoir construit un échantillon grossier, l’algorithme raffine l’échantillon et le maillage selon un paramètre ε. L’algorithme ne construit pas de subdivision de R mais seulement des triangulations locales (stars) de dimension k autour de chaque point de l’échantillon. On montre qu’en raffinant l’échantillon, on peut rendre toutes les stars cohérentes et ainsi obtenir une variété triangulée M̂ qui approche M. L’algorithme n’utilise que des opérations numériques simples, la taille de l’échantillon produit est O(ε−k). On montre que M et M̂ ont le même type topologique, que leur distance de Hausdorff est O(ε) et que l’angle entre leurs espaces tangents est O(ε). La complexité asymptotique de l’algorithm est T (ε) = O(ε−k 2−k) (pour M, d k fixés). Mots-clés : Triangulation de variétés, génération de maillage, échantillonnage, géométrie algorithmique, topologie algorithmique in ria -0 06 04 00 4, v er si on 1 27 J un 2 01 1 Triangulating Smooth Submanifolds 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Umbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms

We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...

متن کامل

Tight Submanifolds, Smooth and Polyhedral

We begin by defining and studying tightness and the two-piece property for smooth and polyhedral surfaces in three-dimensional space. These results are then generalized to surfaces with boundary and with singularities, and to surfaces in higher dimensions. Later sections deal with generalizations to the case of smooth and polyhedral submanifolds of higher dimension and codimension, in particula...

متن کامل

Mean Curvature Flow of Pinched Submanifolds to Spheres

The evolution of hypersurfaces by their mean curvature has been studied by many authors since the appearance of Gerhard Huisken’s seminal paper [Hu1]. More recently, mean curvature flow of higher codimension submanifolds has also received attention. In this paper we prove a result analogous to that of [Hu1] for submanifolds of any codimension. Let F0 : Σn → Rn+k be a smooth immersion of a compa...

متن کامل

A Convex Decomposition Theorem for Four - Manifolds

In this article we show that every smooth closed oriented fourmanifold admits a decomposition into two submanifolds along common boundary. Each of these submanifolds is a complex manifold with pseudo-convex boundary. This imply, in particular, that every smooth closed simply-connected four-manifold is a Stein domain in the the complement of a certain contractible 2-complex.

متن کامل

O ct 2 00 0 A CONVEX DECOMPOSITION THEOREM FOR FOUR - MANIFOLDS

In this article we show that every smooth closed oriented fourmanifold admits a decomposition into two submanifolds along common boundary. Each of these submanifolds is a complex manifold with pseudo-convex boundary. This imply, in particular, that every smooth closed simply-connected four-manifold is a Stein domain in the the complement of a certain contractible 2-complex.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics in Computer Science

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010